(Untitled) Monday, January 10, 2011

Diagnosing and resolving Sporadic Applicaiton Perfo rmance Degredation
A Lab128 Case Study
Fred Habash, Oracle OCP
10/21/10

Issue

An application goes offline and users are no longer able to login. All application servers crash requiring
a reboot.

Diagnostic data and analysis

Initial diagnostic data
» Initial examination of application environment revealed the following ...
* Application servers:
1. A sharp increase in network traffic that accompanied this event.
» Database server:
2. Arecurrent CPU spike up to 85% usage repeating every 30 minutes.
1. A similar increase in network traffic from/to application servers.
» Areboot of application servers resolved the issue and application became available. However,
the cpu usage pattern continued after the reboot.

Advanced diagnostic data

* Based on out initial findings, we started our analysis trying to understand the nature of the network
traffic that accompanied this event. Even though, the CPU usage patterns was interesting, we did
not persue it initially because it persisted after the reboot that resolved the issue.

» To analyze this network traffic, we needed to provide the following:

Quantify it.

Determine if it is mostly inbound vs. out-bound.

Identify the source at session and if possible SQL level.

Finally, use this data to understand and validate application behavior and how it may have
contributed to the application server outage.

PR

Quantify it

» This data is readily available in the Lab128 DB home screen. It displays both in/out-bound SQLNet
traffic. Just a quick look at the graphs showed us immediately that it was mostly an out-bound
traffic from the database. The database was sending out an average of 10MB/sec.

Ultra Recall 1

(Untitled) Monday, January 10, 2011

SOLMet 547 KB/s
1000000

I [
|zers

836 (328

SGLMet 103 MB/s
20000000

_ il

Figure (1)
* Using Lab128, we were also able to accurately identify the time frame during which this event
lasted. It lined up perfectly with the application outage time window. Both events started 13:17 and
lasted for about 40 minutes.

% 1e+06 SOL Met to Client [total]
| | shias
G0
| |
40 | |
! : :
DW —w' -\'\#

1300 1305 13100 1315 13200 1325 1330 133 1340 1345 1%E0 13E5 1400

wed 10/08
1040672010 13:17:48 | [Ciaar Selection) =[50z ~|[=] terith = 2364s 10706/
Figure (2)

Identify source (session or SQL)

» This is where the process became a little tricky. There is no direct way within Oracle to associate
this statistic (sglnet bytes to/from client) with a specific session or SQL, and certainly not
historically. The closest one can get is to use v$sessstat. The limitation, though, it can not be used
historically and given how sessions are reused by the applications, it becomes impractical to drill
down at a specific SQL.

» To establish this association, we had these options:

1. Use ASH data wait events (specially sglnet related events) to extrapolate what sessions could've
potentially caused sqlnet bytes traffic. The problem is that these event are considered 'idle’. As
such, a session that was sending bytes may have been considered idle if caught waiting on this
event.

2. Identify SQL during this time frame and sort it by some dimensions that can potentially be related

Ultra Recall 2

(Untitled) Monday, January 10, 2011

to sqlnet bytes traffic. We could use stats like physical or logical 10. The assumption here is a
SQL that was on the top 10 list may have 'more likely' contributed to sqlnet bytes. This
information will need to be eventually verified by application developers for accuracy.

* Not being fully satisfied with above tow options, we reached to the application developers for some
clues that can help narrow 'suspect' list down. We were told that the most likely criteria from an
application logic standby point is to focus on sqgl that handles (mostly selects) LOB objects.

* Using this lead, we used LAB28 to drill down as follows:

1. Identify the time frame and duration.
This was done displaying the 'sqlnet to client (total)' graph (figure 2). We established begin/end
times as well as duration of the event.

2. ldentify SQL executed during this time frame.
- Simply by dragging the mouse (lightly shaded area) to cover the entire event.
- Then 'Show in SQL explorer' in figure 3.

% 1e+06 SOL Met to Client [total]

| | Se

B0 | |

40 | Ej Show in Activity Explorer |

20 | jli:_ Show in 501 Explorer |

JTWU—-—_ u:'%:: Show Active Sessions |

Ll O e - ' ' ' ' Add Graph =
1200 105 13100 1315 1F200 13S0 13300 1] = 14
whed 11

1070672010 13:17:48 | [Ciear Selestion) R Iderge Graph to Other Page | 10/0

Figure (3)

3. Isolate SQL that handled LOB data.
- Based on our application knowledge, we isolated 9 SQL statements (7 selects and 2 updates)
that handled LOB data on candidate tables.

4. Establish an association between a given SQL_|I D executions and 'sglnet to client’
statistic.
- We then charted execution count for each for these statements against the 'sglnet to client'
chart looking for associations (time and magnitude).
- It was immediately visible to us how SQL_ID 'ca9zf5v7r2jyg’ lined up almost perfectly with the
'sgl net to client (total)' event. This made it the number 1 suspect. At this point, we exonerated
the remainder of the sql_id list.
- We retrieved the full text for this sqgl_id and was able to determine that indeed was fetching a
large size LOB column data.

Ultra Recall 3

(Untitled)

Monday, January 10, 2011

SOL Het
50 Te+06 | QL Me
0 — W w -
20 SOL: ID=ca9zfhv7ri2pg. Plal
0 L
1 SAL: ID=avx47ttbwbynd, Pl
0 |
5 SQL: ID=bpbrc2qg3ack2. Pl:
0 |
10 S5QL: ID=gxqyhu3mva7uw, Pl
0 L
5 SQL: ID=bbyyr45thcycg. Pl
1] f
10 SAL: ID=667unvy8t3ynn, Pl:
0 |
5 S0L: ID=667unvyyBtIynn. Pl:
] |
2 S0L: ID=bzqszifyudhgxg. Pla
0 |
5 SAL: ID=dkjghypvqvans, Pl
0 |
1255 1200 1205 1310 1315 1320 1325 1230 1235 1240 13:45 13:50 1355 14:00 1405
Wy
10/06/2010 13:17:24 | [Clear Selection] (= J[50z ~|[+]
Figure (4)
5. Verify this association by application develop ers.

Upon sharing the above sql_id with the application developers, we received the following reply
(an excerpt from the actual emall) ...

" ... Bingo! That's the query that my patch addresses. ..."

Resolution

Eventually, an application patch was made and issue resolved. The issue resulted mainly from an
application event that triggered all application servers to request a cache update simultaneously.
This flooded the network bandwidth and chocked the application servers causing them to

eventually crash.

Graph below shows reduction of sqlnet traffic after applying patch on 10/7

Ultra Recall

Monday, January 10, 2011

(Untitled)

W
W OLEDTE L 0101 80
g

|....num,lL_“
$
=
%
2
%.w
=
M\a 0232000 20 0101 90
.fw
=

Alerasdei+o oL ool
BasclaE: 1O 0L 0L 0l
= BESCIGIILE 0L 0L 60
< [(eR2gio 0z 0101 60
2285058 FL 01701 6D
gassl0o i 01° 01 60

4 |(egesloszL 0101 60
M Cotasd00 08 010180
m (5£86)61: 0 01'0L 80
Hipzasios+0 o1 oL 60
[18ei00 20 0100 60

-« (08500252 01 01 50
EBLEISH OE 0L 01 50
T8LE)00°EE 01701 80
FLAEDRKIGE DL 0L B0

T TR TR T
022008 20 0L 0L 30
AlBTLEGEE0 0101 80
814500020 0101 80
202005 EE 01 0L 20
(B60EI00:1E 0101 20
J80g)gLiaL 0101 L0
90g00e gL 0L 0L 40
GOOCIGEITE OL' 0L 20
GEOIGLI0L 0101740
SFIEISE L0 0L 0 20
(FER00 50 0L 01720
CTESSISI0 0L OV 20
E1O8)SE LT 04 08 50
£08gdg L |E 0L 0L a0
TESEI0C- 81 01'04 90
EgsloE gl 0108 a0

DRGEI00 LT 0L 01" G0
0SFE00 1L 010050
BECEI00:00 0101 50
(BZGEM00ICE 0L 0L

7.000,000

i S00,000
000,000
600,000

5,000,000

4. 500,000

4,000,000

=—{g| Gehaa£0 0L 01#0

Basaline for bytes sent via SQL*]

Ultra Recall

